Aviation & Climate Change: U.S. Views on an International Approach

Presented to: Seminar on Environment sponsored by LACAC Buenos Aires, Argentina

By: Kurt Edwards Senior International Advisor Office of Environment and Energy

Date: 28-29 September 2009

Aviation Environmental Drivers

- Aviation impacts community noise footprints, air quality, water quality, energy usage and availability, and the global climate.
- Trends show environmental impacts from aircraft noise and aviation emissions will be a critical constraint on capacity growth.
- Fundamental changes ongoing from economic downturn, fuel costs, and financial turmoil.

The <u>challenge</u> is to ensure energy availability and affordability and reducing aviation's environmental footprint, even with projected aviation growth

U.S. Measures to Tackle the Challenge

NextGen: Provide environmental protection that allows sustained aviation growth

Key Initiatives:

- Continued Local Mitigation
- Better Scientific Understanding
- Accelerate Operational Changes
- Mature New Aircraft Technology
- Develop Sustainable Alt Fuels
- Policy Options

U.S. Approach: Air Traffic Management Improvement

New air traffic management capabilities and procedures will—and already do—allow us to further reduce aviation's environmental footprint

U.S. Approach: Benefits of New Procedures Arriving Now

Reduced Vertical Separation Minima (RVSM)

- Enhances capacity in preferred altitudes
- Estimated 300 million gallons saved yearly or 2.9M metric tons CO2

Performance-based Navigation

•RNP in DFW: equivalent of removing 15000 cars from road annually

•RNP in Seattle: 2.9M gallons of fuel or 27,000 metric tons of CO2

AFTER

<u>Continuous Descent Arrival</u> (CDA) or <u>Optimized Profile Descents</u> (OPD) will provide further benefits.

Louisville: UPS pioneered CDA. 30% reduction in noise on ground. 250-465 pounds fuel saved/flight (2.4 to 4.4 metric tons CO₂/flt)

Los Angeles International: 1st US Std Terminal Arrival Route as CDA. ANY aircraft with FMS can use.

Benefits:

2 M gallons fuel saved annually 18597 metric tons CO₂ saved

U.S. Approach: International Partnership

Aviation & Climate Change: U.S. Views

U.S. Approach: Fostering New Aircraft Technology

FAA Continuous Low Energy, Emissions and Noise (CLEEN)

Establishing a consortium to accelerate development of aircraft and engine technologies – to reduce noise, air quality, and greenhouse gas emissions. http://www.faa.gov/news/conferences_events/2008_market_research_conference/

Aviation & Climate Change: U.S. Views

U.S. Approach: Accelerating Use of Sustainable Energy

Jatropha ready: 2-4 years	Algae ready: 8-10 years
Benefits	Benefits
•Uses marginal land	•High productivity
•Agronomy is sufficiently advanced	•Potential for scale
Challenges	Challenges
•Warm climates only	•Major process tech. innovation needed
•Mechanical harvesting not yet mature	•GMO risks
Halophytes ready: 2-4 years Benefits •Uses desert land and salt water •Part of system designed for GHG reduction Challenges •Proven at pilot scale to-date •Improve agronomy for cost reduction	Camelina ready: now Benefits •Ready-to-go •Can integrate with traditional agriculture Challenges •Limited total potential owing to yield •Somewhat tied to grain market swings

Commercial Aviation Alternative Fuel Initiative http://caafi.org

- Looking at a range of fuels
- Potential to enhances energy security and environmental performance
- Assessing business, safety, and environmental aspects
- Aggressive certification targets
- Operational use in 3-5 years

U.S. Approach: Aggressive Fuel Certification Timeline

U.S. Strategy to Reduce Aviation's Carbon Footprint

Global Growth Presents a Challenge

Source: FAA Preliminary Analysis

Group on International Aviation & Climate Change

Program of Action contains three key elements:

1) <u>Global aspirational goal</u> – 2% annual fuel efficiency improvement in short, medium & long terms

2) <u>Basket of measures</u> from which States may choose to contribute to goal, including assistance for developing countries

3) <u>Annual reporting by all States</u> of traffic & fuel burn per Art. 67 of Chicago Convention

Agreed by developed and developing States.

Group on International Aviation & Climate Change

Other Important GIACC Recommendations:

Submission by States of action plans

Development of a CO2 standard for new aircraft types

Development of assistance mechanisms for developing countries: financing, technology transfer, capacity building

Establishment of process to develop a framework for applying market-based measures internationally

High Level Meeting on Int'l Aviation & Climate Change

ICAO Council has recommended the GIACC Program of Action to States.

Oct. 7-9 >> High Level Meeting on International Aviation and Climate Change in Montreal

Intent is for world aviation community to adopt the Program of Action.

Is the Program of Action sufficient?

Can/should the HLM press for greater ambition?

Will the Program of Action get a passing mark?

High Level Meeting on Int'l Aviation & Climate Change

Greater Ambition could include a resolve to...

Meet Carbon Neutral Growth in the medium term

Submit action plans and annual reporting on progress

Develop framework for market-based measures

- Collaborate among States to deploy more efficient ATM
- Cooperate to accelerate more energy efficient aircraft and use of sustainable alternative fuels

Engage with the **development banking community** to develop funding sources

Adopt a CO₂ standard for new aircraft types by 2013 Assembly

High Level Meeting – October 2009 UNFCCC COP 15 – December 2009

Further work at ICAO, informed by COP 15 – 2010

More concrete, robust Program developed in time for ICAO Assembly – September 2010

